The Banach-Saks property and Haar null sets

نویسنده

  • Eva Matoušková
چکیده

A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

Convexity and Haar Null Sets

It is shown that for every closed, convex and nowhere dense subset C of a superreflexive Banach space X there exists a Radon probability measure μ on X so that μ(C + x) = 0 for all x ∈ X. In particular, closed, convex, nowhere dense sets in separable superreflexive Banach spaces are Haar null. This is unlike the situation in separable nonreflexive Banach spaces, where there always exists a clos...

متن کامل

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

متن کامل

Haar null sets without Gδ hulls

Let G be an abelian Polish group, e.g. a separable Banach space. A subset X ⊂ G is called Haar null (in the sense of Christensen) if there exists a Borel set B ⊃ X and a Borel probability measure μ on G such that μ(B+g) = 0 for every g ∈ G. The term shy is also commonly used for Haar null, and co-Haar null sets are often called prevalent. Answering an old question of Mycielski we show that if G...

متن کامل

F U N D a M E N T a Mathematicae on Haar Null Sets

We prove that in Polish, abelian, non-locally-compact groups the family of Haar null sets of Christensen does not fulfil the countable chain condition, that is, there exists an uncountable family of pairwise disjoint universally measurable sets which are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier that this was the case for some Polish, abelian, non-local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010